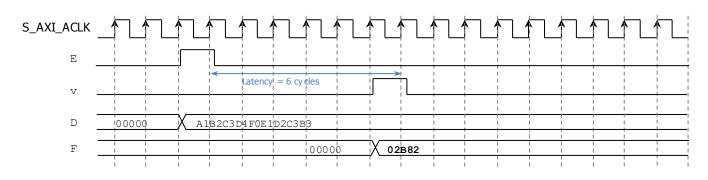
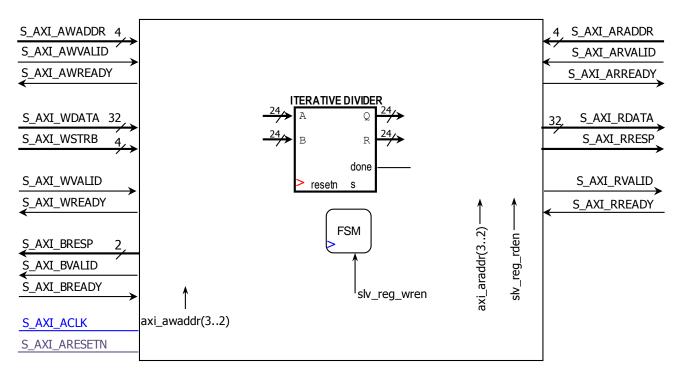

Homework 2


(Due date: May 25th)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (30 PTS)

- AXI4-Lite interface for Pipelined 2D convolution kernel (N=3, B=C=8):
 - \checkmark The I/O timing diagram of the pipelined 2D convolutional kernel is shown below.
 - Input data: 0xA1B2C3D4F0E1D2C3B3. This data is captured when E is asserted.
 - Output data: 0x2B282. It appears after the processing delay (6 clock cycles) with v=1.
 - ✓ Complete the timing diagram for the AXI4-Lite Interface: Given the AXI signals for the 5 Channels, complete the signals associated with the Pipelined 2D Convolution Kernel block (E, v, y, F, FQ signals) on the next page.



myconv2_ip	SIV		READ CHAI			READ ADDRESS CHANNEL				write response ∽ CHANNEL			WRITE DATA CHANNEL			WRITE ADDRESS			
н р т v	slv_reg_rden	RRESP	RREADY	RVALID	RDATA	ARREADY	ARVALID	ARADDR	slv_reg_wren	BREADY	BVALID	BRESP	WREADY	WVALID	WDATA	AWREADY	AWVALID	AWADDR	ACLK
					·]	·			A1B2C3D4		 }		
															3D4				
			· ·		• • - •										FOELD2C3				
			· ·		· • - •					·									
			· ·		· • - •				 <u></u> -	· <u> </u>			-+ -+		000/000B3	····			
					· 				<u>-</u>	· · · · · · · · · · · · · · · · · · ·									
			· ·		· • - •					·									
					• • - •								-+		·				
		OK				<u>E</u> -]												
					00000000										· •• •• •• ••				
]								·				
			· ·		00102B82								- +						
		·			+														

PROBLEM 2 (35 PTS)

- AXI4-Lite interface for Iterative Divider (N=24, M=24):
 - ✓ <u>Sketch the AXI4-Lite Interface</u>. This includes the Slave Registers, their control signals, as well as the extra glue logic (registers, FSM, etc.) to connect the Iterative Divider to the Slave Register signals.
 - Slave Registers: Use as many as you need, indicating their number. The latched addresses depicted (axi_awaddr[3..2], axi_araddr[3..2]) support up to 4 registers. If for example, you need more registers (say up to 8), you would need axi_awaddr[4..2], axi_araddr[4..2].
 - The start signal s should not be generated via software, rather it should be issued by an FSM once the input data has been received. <u>Sketch the FSM diagram (in ASM form)</u> as well.

PROBLEM 3 (35 PTS)

Calculate the result of the following operations. The operands are signed (2C) fixed-point numbers. The result must be a signed fixed-point number. For the division, use x=5 fractional bits.

1.101001 +	1001.1101 -	0.01001 +
1.0001	1.010101	01.11011
0.10011 ×	1.011 ×	01.01110 ÷
10.101	1.0011	1.011

- Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [16 8]. (5 pts)
 - ✓ -32.1875
 - ✓ 123.3125